

A world leader in climate and energy technology

The Danfoss Group operates globally with the primary aims of making modern living possible for our stakeholders and being a leader in refrigeration, heating, power electronics, and mobile hydraulics.

We employ 24,000 people and produce approximately 250,000 components each day at our 76 factories in 25 countries.

We promise leadership in our businesses through reliability, excellence, and innovation – driving true customer satisfaction and solutions within climate and energy.

Learn more at **www.danfoss.com**

products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved

Main **Features**

- High drying capacity prevents the risk of acid formation in the refrigeration system
- Maximum working pressure up to 46 bar
- High *dirt retention*, down to particles of 25 microns, with minimal pressure drop
- Designed to work more than 250,000 cycles
- Wide size range from 1.5 to 75 cu. in.
- 100% Helium Leak tested driers
- Solid core high adsorption, low attrition
- Designed to withstand more than 500 hrs. in *salt spray chamber* (special

coating for marine applications available upon request)

- UL, CE, EN, RoHS, GOST and Chinese Manufacture License of Special Equipment *certifications*
- Black paint gives a better look after brazing installation
- No residual moisture when delivered

ENGINEERING TOMORROW

Protect your HVAC/R system with the most reliable Filter drier in the market

Wide range of Danfoss Filter driers

Extensive experience in all key HVAC/R segments

Danfoss plays a leading role in research, development and production in a wide spectrum of industries, and has been a key player in the HVAC/R field for more than 75 years. Our Refrigeration & Air Conditioning Division designs, produces and markets a comprehensive range of automated solutions and compressors for a wide variety of HVAC/R segments, including

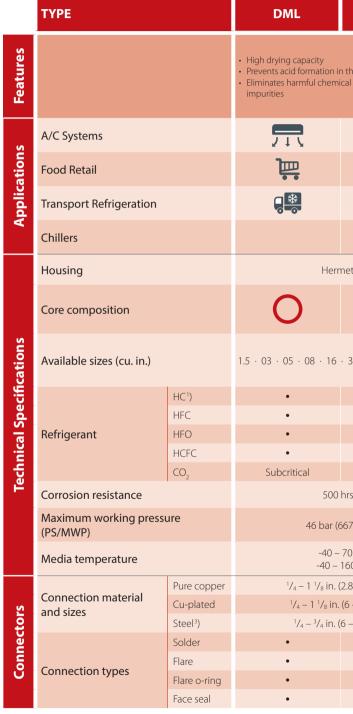
- Heat Pumps
- Commercial Air Conditioning
- Residential Air Conditioning
- Commercial Refrigeration
- Household, Light Commercial and Mobile Refrigeration
- Wholesalers & Installers
- Industrial Refrigeration
- Food Retail

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfosss reserves the right to alter its products without notice. This also applies to

Filter driers

The Filter drier is a vital element of the system's reliability as well as its lifespan. When you choose Danfoss Filter driers, you are guaranteed a product that has been developed specifically for the challenges encountered in Air Conditioning and Refrigeration Systems.

Danfoss' range of Filter driers covers both hermetic and
exchangeable core types. The core makes the Filter drier
adsorb water and acids more effectively to prevent corrosion
of the compressor's metal surfaces and ensure that oil andRegardless of
that will pro
protection.


refrigerant do not decompose. All Danfoss Filter drier feature a solid core. Tests have shown that a solid core Filter driers has a faster adsorption rate, a superior flow capacity as well as a low pressure drop, which can minimise maintenance and running costs.

Regardless of the application, there is a Danfoss Filter drier that will provide your system with long-lasting and reliable protection.

Choose the optimal solution

Manufacturing locations India and Mexico

¹) HC refrigerants compatibility: only solder versions (cu-plated/pure copper) and connection sizes below 25mm are approved for flammable refrigerants now ²) Special coating for marine applications available (2,000 hours)

³) Flare steel connectors. Only DCR filter drier is presented with solder/welding steel connectors

LIQUID LINE	LIQUID LINE		BI-FLOW		COMBINATION RECEIVER AND FILTER DRIER		LIQUID AND SUCTION LINE	LIQUID AND SUCTION LINE			
Û	ţ	Û		¢	ļ	X		Repl	aceable D	CR Core / I	Insert
DCL	DMT	DMB	DCB	DMC	DCC	DAS	DCR	DM	DC	DA	F
the system al reactions and abrasive	 Most suited for transcritical CO₂ applications 	 Built-in check valve All dirt particles are retained irrespective of flow direction 		Combined Filter drier and receiver		Used in the suction line to clean up refrigeration and A/C systems after a compressor motor burn-out	 Features exchangeable cores Protects refrigeration and A/C systems from moisture, acids and solid particles The DCR housing is sold individually (without core) 	Most suited for applications requiring the highest moisture capacity	Most suited for appli- cations re- quiring high moisture and acid adsorption capacity	For high acid and standard moisture cpacity for cleanup after burnout	Designed for high dirt retention in liquid or suction line
<u>j</u>	Ì.	<u>ت</u>	<u>ت</u>	Ē	щ.	آ	ب				
							※ ∐	※ Ξ			
netic	Hermetic	Hermetic		Hermetic		Hermetic	Semihermetic	-			
0	0	0	0	0	0	0	See core details	0	0	0	-
30 · 38 · 41 · 60 · 75	08 · 13	05 · 08 · 16 · 30		04 · 07 · 20 · 40		08 · 16 · 30 · 41 · 60 · 75	48 · 96 · 144 · 192	# cores or inserts: 1 core = 48 • 2 cores = 96 3 cores = 144 • 4 cores = 192			
•	•	•	•	•	•	•	-	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	Transcritical	Subcritical	•	Subcritical	•	Subcritical	Subcritical		-	•	•
nrs²)	500 hrs ¹)) hrs		hrs	500 hrs	500 hrs	_			
67 psig)	140 bar (2030 psig)	46 bar (667 psig)		42 bar (610 psig)		35 bar (500 psig)	46 bar (667 psig)	-			
70 °C 60 °F	-40 – 100 °C -40 – 212 °F	-40 − 70 °C -40 − 160 °F		-40 − 70 °C -40 − 160 °F		-40 − 70 °C -40 − 160 °F	-40 − 70 °C -40 − 160 °F	-40 − 70 °C -40 − 160 °F			
2.8 – 28 mm)	-	¹ / ₄ – ⁵ / ₈ in. (6 – 12 mm)		¹ / ₄ - ⁵ / ₁₆ in. (6 - 8 mm)		$^{3}/_{8} - 1$ $^{1}/_{8}$ in.	⁵ / ₈ – 2 ⁵ / ₈ in. (16 – 54 mm)				
(6 – 28 mm)	$^{1}/_{4} - ^{1}/_{2}$ in. (6 – 12 mm)	¹ / ₄ – 1 ¹ / ₈ in. (6 – 12 mm)		¹ / ₄ - ¹ / ₂ in. (6 - 12 mm)		-	-	-			
5 – 19 mm)	¹ / ₄ - ³ / ₈ in. (6 - 10 mm)	$^{1}/_{4} - ^{5}/_{8}$ in.	(6 – 16 mm)	-	-	³ / ₈ – ⁵ / ₈ in. (10 – 16 mm)	⁵ / ₈ – 2 ⁵ / ₈ in. (16 – 54 mm)				
•	•	•	•	•	•	•	•				
•	•	•	•	-	-	•	-	-			
•	-	-	-	-	-	-	-				
•	-	-	-	-	—	-	-				